Markus Oberlehner

Writing Good
Tests for Vue
Applications

Level up your Vue testing skills and
build better applications faster

Contents

PREFACE
Standing on the Shoulders of Giants
One Perspective Among Many

Setting the Stage

BREAKDOWN OF TESTING APPROACHES
The Role of Manual Testing in Test-Driven Development
Four Types of Automated Tests
E2E System Tests
Application Tests
Component Tests

Unit Tests

PLANNING OUR TESTING STRATEGY
Effectively Combining Different Testing Approaches

Code Coverage Metrics: A Useful Tool with Limitations

THE THREE PRINCIPLES FOR WRITING GOOD TESTS
A Programmers Superpower: Decoupling
Decoupling from the Test Framework
Decoupling from Implementation Details

Decoupling from the Ul

SETTING UP THE PERFECT TEST ENVIRONMENT
Choosing the Best Tools
Component Test Setup With Vitest
Basic Playwright Setup
Decouple Application Tests from the Test Framework

Mocking

DESIGNING EFFECTIVE APPLICATION TESTS
What Is an Application?
The Tools of the Trade
Application Testing Fundamentals
Decoupling from Implementation Details
Crafting a Custom Domain-specific Language

Mocking and Preconditions

MASTERING COMPONENT TESTING
When to write Component Tests
Crafting High-quality Component Tests

Enforcing Component Interoperability with TypeScript

UNIT TESTING FUNDAMENTALS
Tests First
Extract Reusable Utility Functions from Components

Don't Test Composables

TESTING IN THE AGILE WORLD
Breaking down Silos
Rapid Feedback: A Prerequisite for Agile
The User Story
The Beyoncé Rule
Two Styles of Writing Tests
Who is Responsible for Writing Tests?
When is the Right Time to Write Tests?

DEEP DIVE INTO TEST-DRIVEN DEVELOPMENT
What is TDD?
Why Tests First?
The Red-Green-Refactor Cycle
The Limits of TDD and When Not to Rely on It
Practicing TDD: Let's Build an App Together!

WRAPPING IT UP
Evaluating Your Testing Regime: Key Indicators of Success

Continuous Improvement

Preface

Testing can only prove the presence of bugs, not their absence.

— Edsger W. Dijkstra

Over the past few years of my career, I spent countless hours dealing
with testing. I wrote numerous tests and devoted tons of time thinking
about how to write good tests. However, unfortunately, I also wrote a
great deal of bad tests and made many mistakes typical for people new
to the art of testing.

I wrote this book for Vue developers like me who want to up their
testing game and write good tests for Vue applications. Maybe you have
already written your fair share of bad tests and wonder how to get to
the promised land of fast feedback loops, rapid release cycles, and
refactoring with confidence testing advocates keep talking about.
Over the following chapters, we'll explore how to reach this magical
place.

This book is not mainly about learning to use specific frameworks
and libraries. Quite the opposite! There is even a dedicated chapter on
decoupling tests from particular test frameworks.

If your primary goal is to learn just the basics of using tools like
vue-test-utils and Jest to write Unit Tests for Vue components,
this is not the perfect book for you. Yet, if you want to learn how to
build better applications faster, look no further!

Instead of going into the details of how to use this or that tool, this
book is about principles and best practices that enable us to write
highly valuable and maintainable tests. That said, we will also examine
the pros and cons of popular frameworks and which to choose. And,
spoiler alert, we will settle on Vitest and Playwright as test

frameworks. In addition, we will use the Testing Library package to
decouple tests from implementation details and the Mock Service
Worker library to mock API requests.

Although this book primarily aims at Vue developers (we use Vue.js
in all examples of components and application code), the basic
principles apply to all kinds of web applications, no matter what
framework we use or if it's a multi-page application (MPA) or single-
page application (SPA). So, the knowledge in this book is a solid
foundation for your future software developer career, even if your path
leads you to a different technology stack.

While I'm confident that the tips and principles in this book will
help you avoid the mistakes I've made in the past, there's always room
for improvement, and what works for me might not work for you.
Additionally, new tools open up new opportunities and challenge
established best practices. Over time, new insights can radically
change how and what we test.

Still, after reading this book, you will write better tests and code and
ultimately build better products faster.

Standing on the Shoulders of Giants

Throughout my 15-year journey in programming, I've been fortunate
to have access to countless blog articles, talks and videos, and
StackOverflow threads (isn't the internet amazing?). The collective
wisdom of this community has been instrumental in shaping my
knowledge and skills. While it's impossible to thank everyone
individually, I'd like to acknowledge a few individuals who have
profoundly influenced my thinking about coding in general and my
approach to testing in particular.

Firstly, Anthony Fu, the creator of Vitest, deserves special mention.
Vitest quickly became my favorite test runner. It has made testing

more efficient and enjoyable for me. And still, Vitest is only a tiny
piece of Anthony's contributions to the Nuxt, Vue, and Web
development community.

Next, I want to express my gratitude to Kent C. Dodds. As the
creator of the Testing Library and author of numerous insightful blog
articles about testing practices, Kent's contributions to the field are
nothing short of remarkable.

Furthermore, I also want to express my admiration for Debbie
O'Brien. Her passion and enthusiasm for testing are genuinely
infectious. Debbie's dedication to demystifying testing and making it
accessible to all developers, regardless of their experience level, is
inspirational.

Additionally, I'd like to thank Dave Farley. His insightful videos on
the Continuous Delivery YouTube channel offer profound insights.
Dave's teachings on effective development practices have influenced
many of the concepts discussed in this book.

As I already said, there is no way I can mention everybody. Still, I
also want to name Lachlan Miller, Mark Noonan, and Jessica
Sachs, for whom I'm incredibly thankful for their contributions to the
testing space.

Standing on the shoulders of these and so many more giants, ['ve
seen further and understand deeper. I hope this book helps you in
your journey and perhaps, one day, inspires you to become a giant on

whose shoulders others may stand.

One Perspective Among Many

While researching for this book, reading other books, blog articles,
and tweets, and watching countless videos, [encountered a wealth of
material supporting my thoughts about testing. Some viewpoints,
though slightly divergent from mine, still sparked inspiration.

However, many brilliant individuals also voice contrasting
perspectives, often contradicting my views. After repeatedly
discovering contradictory information, it quickly became clear to me: I
can't write the definitive book on testing. This book can't provide a one-
size-fits-all solution or dictate practices that will magically align
seamlessly with your specific needs. No single book can.

I base everything I write on my experiences and personal opinions.
What else can I do? On the one hand, this means I base it on the
experiences of somebody who has written code almost daily for the
past 15 years. On the other hand, it also means that I ground my
writing on the opinions of a human being who can't know it all and
has barely scratched the surface of what there is to explore in the vast
world of software.

This text primarily addresses testing standalone SPAs that fetch
their data from one or more independently developed APIs or
microservices. We assume these services are independently tested and
are not the main focus of the testing strategies discussed here.
Suppose your application directly accesses a dedicated database
rather than querying data over HTTP APIs. In that case, you may seek
other resources or adjust the techniques presented in this book to fit
your needs.

Although I believe we can apply many of the principles we'll explore
in this book universally, I urge you to challenge everything I write.
Remember that what works for me and others might be

counterproductive in your particular case.

Setting the Stage

This book starts with a good deal of theory. Why, you ask? Because I
believe in giving you a solid foundation you can build upon. The
principles and concepts I introduce will equip you with the knowledge

to devise your own solutions. After all, every project is unique, and
what works in one situation may not work in another.

Although we'll learn a lot about principles and testing theory, I'll
provide plenty of practical examples and techniques for writing tests
per these principles throughout the book. But remember, these are
just examples. There are countless ways to write tests that adhere to
the principles we'll discuss. The techniques and methods I present are
just one of the paths to writing good tests. My goal is to provide you
with the knowledge to navigate the often murky testing waters,
regardless of the tools you use or the specific challenges you face.

And let's be honest: sometimes, you might not adhere as strictly to
these principles as I describe in this book. And that's okay! The real
world of software development is a complex, ever-changing landscape.
Sometimes, you need to adapt and adjust based on your
circumstances and goals.

Remember, the ultimate aim here is not to follow a rigid set of rules
but to understand the principles that underpin effective testing. Once
you grasp these, you can apply them to your unique context and
challenges.

In the final chapter, we'll roll our sleeves and dive deep into test-
driven Development (TDD). We'll build a real-world application using
TDD and all the knowledge you've soaked up from the previous
chapters. It's where theory meets practice; trust me, it will be fun!

I want to write the book I wish I had in my hands when I started my

testing journey many years ago. Let's do this!

Breakdown of
Testing Approaches

To create a robust and effective testing strategy for our Vue
applications, we need a firm understanding of the various testing
approaches available. In this chapter, we examine different test types
and their use cases, laying the groundwork for our overall testing
strategy.

In this chapter, we will:

e Learn about the spectrum of testing approaches, ranging from

manual testing to fully automated tests

e Explore the four main types of automated tests: End-to-end
(E2E) System Tests, Application Tests, Component Tests, and
Unit Tests

e Discover the advantages and limitations of each test type and
when to apply them

e Recognize the role of manual testing and its limitations, such as
identifying UX issues or exploring edge cases

e Highlight the importance of automated tests in ensuring the
deployability and quality of our applications

e Gain insights on how to integrate different testing approaches
to form a comprehensive and well-rounded testing strategy

We're not pitting different testing methodologies against each other.
Instead, we are focusing on understanding how different testing
methodologies can complement each other to suit our project's
requirements best. By the end of this chapter, we will clearly

understand the various testing approaches and be well-prepared to
create a tailored testing strategy for our Vue projects.

The Role of Manual Testing
in Test-Driven Development

As we delve into the various testing approaches, let's first examine the
role of manual testing in test-driven development. While TDD
primarily focuses on automated testing, manual testing still has a
place in our overall testing strategy. It can be instrumental in
uncovering errors, especially those that occur in specific edge cases,
and can complement automated tests by focusing on an application's
user experience and usability.

Knowing when and how to incorporate manual testing into our
testing strategy enables us to create a well-rounded testing approach
that ensures not only the functionality of our application but also its

usability and overall user experience.

Benefits and Limitations of Manual Testing

Systematic manual testing can lead to excellent results in preventing
the deployment of errors that only occur in particular edge cases.
Quality Assurance (QA) professionals excel at finding various types of
errors, including those that often only happen in exceptional
circumstances. But manual testing isn't just about bug hunting. It's
also an invaluable tool for assessing the user experience of our
product.

Manual testing serves a dual purpose: It helps us answer not merely

the question of 'Does it work?'but also 'Does it work well?'

Testing in Production

Testing directly on the production system can be risky, as it may
negatively impact user experience, data integrity, and system stability.
Therefore, testing on a staging environment closely mimicking the
production system is preferable.

A staging environment allows for thorough testing without the risks
associated with testing on production. It should be fully independent
of the production system to ensure that any changes or tests
performed do not affect the live application.

However, be aware that maintaining a staging environment that
perfectly mirrors the production system can be a complex and
resource-intensive task. It necessitates maintaining parity between the
two environments. Make sure to have automated processes to
synchronize configurations, data (remember to anonymize sensitive
information), and code updates.

The decision to test on production or use a staging environment
depends on the specific needs and risks associated with the
application and the tests we perform. In some cases, specific tests still
need to be conducted on the production system, especially when
performing performance testing or real-world user behavior
simulations.

Don't Strive for Perfection

When starting out writing tests, a couple of common questions arise:

e How close should our testing approach be to the reality of our

users?

e Should we perform manual tests on the production system? Or
should our staging system mirror the production system as

accurately as possible?

e [sitnecessary for our test framework to control a real browser
or even be capable of simulating all available browsers and

devices we want to support?

Suppose our goal was to guarantee absolute certainty our application
works under real-world circumstances. In that case, we'd have to
closely observe a representative set of users on the production system
performing all possible actions within our application. In this perfect
world scenario, the users do not know we are keeping taps on them so
as not to distort the results. In practice, however, we must respect the
privacy of our users, and, even more importantly, we want to know
about any errors before deploying our application to production.

Although it's possible to use tools that track actual user behavior to
find errors, we typically only go this route to uncover usability issues.
Such tests can be instrumental in finding problems with our
application's UX and thus justify the high costs and delayed feedback.
However, due to the extended time gap between deployment and data
collection, monitoring our users is unsuitable as a systematic
approach to finding errors in our system.

But what about performing tests in production(-like) environments
in various available browsers and devices? Here, the answer is more
nuanced. You have to weigh costs against potential benefits and your
risk appetite.

e How big of a deal is it if our service stops working in a particular
niche browser after deploying a new feature?

e How fast can we recover after deploying faulty code?

e [s our application prone to bugs we can only replicate in

production-like scenarios?

Manual testing, performed on production-like systems with various
browsers on real devices, maybe even by actual users, might seem like
the only bullet-proof way to be absolutely certain our application
works in all circumstances. But going that route is not sustainable.
Remember that striving for maximum thoroughness in testing can
be very time-consuming, resource-intensive, and expensive and offers

diminishing returns.

Manual Test Plans and Exploratory Testing

The exact procedure for manual testing can vary greatly. For example,
we can take a very structured approach, with meticulously worked-out
test plans that we process step by step. Or, we try to provoke errors
that can occur with improper or unforeseen usage patterns. While
executing fixed test plans often can (and should) be automated, fully
automating exploratory testing is much more challenging. Manual,
exploratory testing, therefore, represents a valuable building block in a
successful testing strategy.

When we use manual testing in conjunction with automated tests,
our primary goal is not to prevent regressions—automated tests are
better suited to clarify whether our application works-instead, with
manual testing, we can focus on checking how well the application
performs its tasks. Machines cannot answer this question. At least not
yet. On the other hand, humans are well suited to empathize with
other humans and thus determine whether interacting with our
application is intuitive. And whether the application can cope with
users using it differently than we planned. In contrast to automated
testing, manual testing is costly. Therefore, we should try to get the
most out of it when we choose this approach.

Remember: Manual testing is expensive not only because of the high
personnel effort but also because developers receive feedback very

slowly during their daily work. Feedback loops should be as short as

possible. A few milliseconds are perfect, seconds good, minutes may
be acceptable in some cases, and anything beyond hours is unsuitable
as a tool to support the development process. From the development
cycle perspective, manual testing can only ever supplement
automated forms of testing.

Manual Testing in High-Stakes Industries

My typical experience as a developer revolves around building
important but ultimately low-stakes applications like job boards and
CV builders. However, I want to acknowledge that other types of
applications have significantly higher stakes.

Imagine working on software for medical devices, financial systems,
or aviation control systems. In these fields, the margin for error is
incredibly slim. In such environments, we can justify the cost of
complementary manual testing by the potential consequences of
software failure.

Manual testing can help us to discover errors that we would
otherwise only find when it is too late. In most cases, however, I
recommend using this type of testing only in addition to entirely
automated techniques. And even if we decide to rely heavily on
manual testing, it's not an excuse for doing less automated testing.
Quite the opposite! In high-stakes industries, automated testing is

even more important!

Balancing Manual and Automated Testing

Finding the right balance between manual and automated testing is
crucial for optimizing the effectiveness of our testing strategy. Manual
testing can provide valuable insights into wusability and wuser
experience, yet automated testing should be the foundation of our

approach, ensuring our application's functionality, performance, and
reliability.

By implementing a well-dosed manual testing regime that does not
block deployments (no gatekeeping!) and focuses on finding issues
with our application's usability instead of detecting regressions, we
can create a well-rounded and efficient testing strategy that ensures
the quality of our applications while minimizing costs and maximizing

the value of our testing efforts.

Four Types of Automated Tests

Automated tests are crucial for ensuring that applications and even
whole systems perform as expected. They significantly reduce manual
testing efforts, empowering us to run tests frequently with minimal
additional cost. The principle is straightforward: every test that can be
automated should be automated. This approach allows us to allocate
resources more efficiently, focusing our manual QA activities on
looking for errors that automated tests cannot detect.

Every test that can be automated should be automated.

In the realm of automated testing, we often encounter various terms
for different test types, such as E2E tests, acceptance tests, integration
tests, and unit tests. As there is no official authority to standardize

these terms, we will define and differentiate between four types of
automated tests:

1. E2E System Tests: These tests evaluate the entire system,
including the infrastructure layer (data persistence, third-party
services, etc.). They ensure that all parts work together
seamlessly, comprehensively assessing the system's overall
functionality.

2. Application Tests: Focused on verifying the fulfillment of
acceptance criteria from the user's perspective, Application
Tests examine both the user interface and the application's
business logic. Unlike E2E System Tests, these tests isolate the
application from external dependencies, using mocks to allow
for a more targeted assessment of the application's
functionality.

3. Component Tests: These tests concentrate on individual Vue
components within the application, ensuring they function
correctly. By isolating components and testing them
independently, Component Tests help quickly identify and

resolve issues at a granular level.

4. Unit Tests: Designed to validate the functionality of smaller
units within the application, Unit Tests evaluate the correct
working of specific elements from the perspective of a
developer using a piece of code (~unit) in their code.

By understanding the distinct purposes and characteristics of these
four types of automated tests, we can create a comprehensive testing
strategy that ensures the reliability of our Vue applications while
iterating quickly on new features.

E2E System Tests

I define E2E System Tests as tests that test a whole system without
mocking or stubbing any dependencies of the frontend application.
While we use mocks in other forms of automated testing to run tests
independently of services external to our Vue application, we avoid
them altogether in E2E testing. On one end, a user interacts with our
application's UL; on the other end, we typically write data to a database
or trigger an action. An E2E System Test simulates actual user
behavior and triggers the same backend processes that would occur

when performing the same actions for real.

System
Vo TTTTTTTTTT T T m e m e e H
' 1
' 1
' '
! l
! Service A —> '
l !
]]
' HTTP i
]]
] |
: :
1 Froa.ntev.\d —— HTTP —> ServiceB |——> 1
H Application H
: :
' '
! HTTP ;
' '
' '
l l
' Service C —> :
] |
| |
| |
| |
e o o o o oo oo e ccccmcmcmcmmemme e H

View of an entire system with one user-facing
frontend application and multiple (micro)services.

Because we test the entire system, including all (micro)services and
the infrastructure, end-to-end, E2E System Tests instill maximum

confidence. Testing all the possible interactions between different

system parts allows us to identify errors that would otherwise go
undetected.

// Test with no mocking whatsoever
it('should be possible to buy a bike', async ({ page }) => {
await page.goto('https://my.bikestore');

await page.findByText('Best Bike Ever').click();
await page.findByRole('button', { name: 'Add to cart' }).click();
await page.findByRole('button', { name: 'Checkout' }).click();

/] «as

const successMessage = page.findByText('Thank you for your order!');
expect(await successMessage.isVisible()).toBe(true);
};

Yet, despite the comprehensiveness of E2E System Tests, we cannot
guarantee our system is error-free! Even the best and most elaborate
tests can only prove the presence of errors, not their absence. Keep
that in mind when later deciding between more and less thorough
testing approaches.

Challenges and Costs of E2E System Tests

While automated E2E System Tests instill high confidence, they come
with challenges and costs. For example, to ensure our tests provide
reliable results, we must create a test environment that closely
resembles the production environment. Establishing and maintaining
such a replica is a complex task. We need to prevent interference

between test scenarios. Our test infrastructure must allow us to run
tests in any order and even in parallel without affecting each other.

Careful planning is essential for creating a test environment that
enables consistent and reliable results. Taking shortcuts may lead to
long-term issues, such as false positives and flaky tests, which can
significantly impact the reliability of our tests.

Another factor to consider is the significant resources required to
run one or multiple exact copies of the production system. To cut
costs, many companies use underpowered hardware for their testing
and staging environments. As a result, E2E test suites may take several
hours to complete, undermining the goal of leveraging testing for fast
feedback loops.

We should aim for stable and swift tests. Flaky tests with lengthy
runtimes often prove too costly due to their moderate benefit for
developers and high maintenance requirements. Striking the right
balance between cost and confidence is crucial when designing and

implementing E2E System Tests.

Technical Implementation of E2E System Tests

Tailoring the architecture and infrastructure of our testing
environment to the requirements of our system is crucial for running
E2E System Tests independently. We must configure the system to
allow for isolated, parallel test execution and ensure the necessary
resources and services are available for each test scenario.

Let's consider a microservices architecture as an example. To set up
an effective E2E test suite, we must bring each microservice into a
particular state. For instance, if we want to test if a web shop user can
cancel an order, at the very least, we must set up a fresh user and
assign a pending order to them. Designing and maintaining such an
environment is a complex task that could fill another book. However,

investing in a well-structured architecture and infrastructure will

ultimately enhance the efficiency, reliability, and value of our E2E
System Tests.

The technical implementation of E2E System Tests varies based on
the system under test and the technologies used. As a result, I won't
delve into the details of writing E2E System Tests in this book.
Nonetheless, many principles and techniques discussed in the chapter

on Application Tests also apply to E2E System Tests.

Using Smoke Tests to Balance Confidence and Costs

E2E System Tests offer a high level of confidence but come at a steep
cost. Given the complexity and time-consuming nature of
implementing and maintaining E2E System Tests, we must carefully
weigh the pros against the cons to decide which parts of the system
warrant E2E testing. One approach to significantly reduce the run
times of E2E System Tests is to rely on smoke tests.

Two factors make E2E System Tests particularly expensive: the effort
required to set up and continuously maintain an environment for
conducting these tests and the comparatively long run times.
Adopting a smoke testing approach can help address these challenges.

Smoke tests focus on the most critical and delicate parts of the
system, particularly areas where integration with other system
components is essential. The role of smoke tests is to quickly alert us
about fundamental problems with our software through a few select
tests rather than achieving very high test coverage. By smoke testing
our entire system, we can promptly uncover issues in the most crucial
areas of our application.

We strictly focus on our system's core functions. For example, in an
e-commerce application, we would test adding a product to the
shopping cart or going through the checkout process. In those cases,
we are interested in whether the integration with the payment

provider functions correctly or whether our system sends the order to

the correct order-tracking service. We are less concerned with
verifying every tiny detail of the process.

Using smoke tests to integrate E2E System Testing into our overall
testing strategy allows us to focus on testing functionalities whose
failure would result in significant financial loss and where there are
delicate dependencies with other parts of the system. This approach,
combined with other testing methodologies, is an excellent way to
keep the effort required for E2E System Tests in check while benefiting
from their advantages, such as ensuring that the individual
components of our system communicate correctly with each other.

Monitoring and Reporting

Monitoring and reporting our E2E System Test pipeline is crucial for
staying informed about whether our application is -currently
deployable. By addressing any issues promptly, the team can
proactively identify and resolve problems before they accumulate.

Remember: whenever our pipeline fails, fixing it becomes the
top priority of the whole team. If we allow our tests to fail without
taking immediate action, they lose their purpose and value. For
example, if a team starts ignoring a pipeline because it's flaky and
constantly failing with false positives, they may lose trust in the test
suite. Over time, this can lead to a dangerous situation where the team
becomes desensitized to failing tests and starts to assume that all
failures are false positives. At some point, the time will miss a critical
error. Clear and concise reporting helps stakeholders stay informed
about the application's status and whether it is deployable.

Neglecting to address failing tests or ignoring the results of our E2E
System Tests can lead to a false sense of security and potentially allow
critical issues to slip through to production unnoticed. By prioritizing

the maintenance and reliability of our test suite, we can ensure that

our E2E System Tests continue to provide the intended value and help
us deliver a high-quality application.

Continuous Improvement

As our application evolves and grows, we must review and improve our
E2E System Testing process. We should regularly update test cases to
cover new features and functionality. Addressing false positives and
flaky tests is crucial for maintaining the reliability and effectiveness of
our test suite.

Over time, we should refine our testing strategy to focus on the
most critical components of our system. By prioritizing the areas with
the most significant business impact, we can ensure that our E2E
system tests provide the highest value.

While automated E2E System Tests can provide considerable
benefits in ensuring the reliability of our system, they come with costs
and challenges. However, by incorporating smoke tests and
continuously improving our testing process, we can achieve high

confidence while keeping costs in check.

Application Tests

The term Application Test, as I use it in this book, doesn't have a
universally agreed-upon meaning. Many resources use the term
integration test for this type of test, while others use EZE test to describe
tests with a similar purpose. Even the phrase application test has
varying meanings online. For clarity, I will use the term Application Test
throughout this book and differentiate between E2E System Tests and
Application Tests.

You might disagree with the names I've chosen, and that's okay. Feel

free to adopt a naming scheme that fits your or your team's

preferences. However, one thing is crucial: Due to the ambiguity of the
terminology, everyone within a team or company must have a shared
understanding of each test type. Establishing a common language
helps avoid confusion and ensures effective communication when
discussing and working with different types of tests. Decide on the
terminology you want to use in your company and make it a priority
that everyone is on board.

// Application Test mocking an external service
it('should be possible to buy a bike', async ({ page }) => {
await page.route('/api/product/list', async route => {
const json = [
bestBikeEver,
notSoGoodBike,
badBike,
1;
await route.fulfill({ json });
})s
await page.route('/api/checkout', async route => {
const json = { success: true };
await route.fulfill({ json });
})s
await page.goto('https://my.bikestore');

await page.findByText('Best Bike Ever').click();
await page.findByRole('button', { name: 'Add to cart' }).click();
await page.findByRole('button', { name: 'Checkout' }).click();

VI
const successMessage = page.findByText('Thank you for your order!');

expect(await successMessage.isVisible()).toBe(true);

});

The Purpose of Application Tests

Although both categories of tests ensure we fulfill a set of acceptance
criteria, Application Tests serve a slightly different purpose than E2E
System Tests. While E2E System Tests aim to verify the integration of
our application with the entire system, including all services,
Application Tests focus on validating only the behavior of our
application, ignoring the rest of the system. The goal is to prioritize fast

feedback loops over chasing absolute certainty.

Application

Git Repository

We focus on one system piece: the Vue.js-based Single-Page Application.

In the context of this book, I define an application as a Vue.js-
based Single Page Application (SPA) within a single repository, without
any services and APIs it might rely on to get its data. Users interact
with our system through the Vue application, meaning all acceptance
criteria, formulated from the users' perspective, go through the Vue
SPA first. Parts of the system outside our Vue SPA (database, backend

services, etc.) are invisible to our users, and we can safely ignore them
for this type of testing.

When writing Application Tests, we assume that all other parts of
our system function as expected. This assumption is reasonable,
considering that we may not have access to the code of all the services
our application communicates with. By presuming that the external
pieces we rely on work as expected, we can safely replace them with
mocks as long as we ensure adherence to the contracts provided by

those external services.

Application Tests vs. E2E System Tests

E2E System Tests cover the entire system, including all its
components, like API services and databases. In contrast, the primary
goal of automated Application Tests is to ensure that the application
our users directly interact with, functions correctly. We test the
behavior of our application rather than the implementation of the
system as a whole.

The type of application we test determines which factors we
consider relevant for evaluating whether we meet the acceptance
criteria. For instance, the exact data persistence method does not
concern us when testing a web application's user interface. However,
verifying whether data is stored correctly is crucial when testing a
backend API service.

The key difference between Application Tests and E2E System Tests
is the clear boundary to other system parts, with Application Tests
focusing on a single application while ignoring or mocking all aspects
of the system that are not part of our application.

While some may question the validity of tests that omit large parts
of our system, the advantages of this compromise generally outweigh
the disadvantages. Comprehensive E2E System Tests offer diminishing

returns compared to simpler and faster Application Tests. The

minimal confidence gain they provide is usually not worth the
additional cost.

When deciding between E2E System Tests and Application Tests,
consider the following:

e Use E2E System Tests sparingly, primarily as smoke tests, to

ensure the system's critical functionality works as expected.
e Consider the project's specific needs and available resources.

e When in doubt, rely more heavily on Application Tests and

prioritize rapid feedback loops.

When done correctly, Application Tests are fast, stable, and easy to
implement. They are generally more cost-effective due to less
maintenance and shorter feedback loops, positively impacting the
team's velocity. While they don't guarantee that our entire system will

work, they offer a high confidence level at a comparatively low price.

Component Tests

Before diving into the details, let's clarify what I mean by Component
Tests. In the context of this book, when I refer to Component Tests, I'm
talking about tests that focus on a single Vue.js component.
Components are the building blocks of our application. Each one has a
specific job and must perform it flawlessly. Component Tests allow us
to ensure this by testing the functionality of each component in

isolation.

Component A

Component 8

Component C

An application consists of multiple pieces and components.

The most significant benefit of Component Tests over Application
Tests is their speed. Creating Component Tests is a quick process, and
they provide rapid feedback. By following certain best practices,
maintenance is also straightforward compared to more extensive ways
of testing. However, Component Tests cannot tell us whether our
entire application functions as expected. As the name suggests,
Component Tests evaluate the functionality of a single component, so

only a tiny part of our application, in isolation.

// In this Component Test we only test a single
// “PostForm™ component in isolation.
it('should inform the user when they enter invalid data', async () => {

render(PostForm);

const inputField = await screen.findByLabel('Title');
await userEvent.type(inputField, '');

await userEvent.click(screen.getByRole('button', { name: 'Save' }));

expect(await screen.findByText('Please enter a valid
title')).toBeInTheDocument();
3

Test Frameworks and Test Types

We often associate certain tools with specific types of tests. For
example, many people identify Playwright with E2E and Application
Tests due to its capabilities for simulating user interactions in a real
browser environment. On the other hand, Jest and Vitest are
frequently seen as the go-to tools for Unit and Component Tests.
However, it's important to note that all the above tools can execute
both Application and Component Tests. The choice depends on our
specific needs and the trade-offs that best suit our circumstances.

The crucial point to remember is that the type of test—whether a
Component or Application Test—is not determined by the tool we use
but by what and how we test. We can run Application or E2E System
Tests using Jest or Vitest, just as we can conduct Component Tests
with Playwright or Cypress. These tools are versatile enough to test
both individual components and complete applications.

Ultimately, we should decide to use a particular tool based on

factors such as the level of confidence we require, the speed of

execution, and the ease of setup and maintenance. By understanding
each tool's capabilities and trade-offs, we can make informed

decisions that align with our testing goals and project requirements.

Two Perspectives: User And Developer

Unlike E2E System Tests and Application Tests, which we write from a
user's point of view, Component Tests require us to consider two
angles: the perspective of a user and how a developer interacts with a
component when using it to build a new feature.

While we also take a developer's perspective with Unit Tests, the
main differentiator between Unit and Component Tests is that with
Component Tests, we must consider a user's perspective in addition to
the developer's view.

As developers, we interact with a component through its API, which
includes props, events, and slots. It's crucial to ensure that the
component behaves as expected when receiving different
combinations of inputs through its API. Equally important is to test
how the component renders and behaves in response to user

interactions, such as clicking buttons or filling out forms.

Component

pomeecececececccacans .
]]

]]

]]

]]

]]

: Events (out) "

]]

]]

\ :
Developer : "
M Props "

l |

]]

]]

]]

]]

]]

E s Events (in) E

g 2]]
]]

]]

\ |

User : |
UI (HTML) :

:

]

]

]

:

Two perspectives: Developer and user

By considering both the user's and developer's perspectives, we can
create comprehensive Component Tests that ensure our Vue
components work as intended and integrate seamlessly with other
parts of our application. Always keep these two points of view in mind

when writing Component Tests.

What If Writing Tests Feels Like a Chore?

If writing Component Tests feels like a chore, it might indicate that our
code is hard to test, suggesting room for improvement in code quality.
The more we adhere to best practices when writing code, the easier it
becomes to write good Component Tests.

For example, pure functions and components without side effects
are much easier to test than functions that trigger side effects (e.g.,
fetching data from or sending data to an API endpoint) or depend on
globals. To make our code more testable, we should avoid registering
components globally, using Vue plug-ins excessively, and fetching data
at every level of our component tree as we see fit.

Many developers who struggle with writing and maintaining tests
tend to write tests after finishing the code for a new component.
However, if we flip the script and practice TDD, writing the test before
the actual implementation, we will find that writing testable code
comes naturally.

Focusing on writing testable code and embracing TDD can make
writing Component Tests more enjoyable and efficient.

Benefits of Component Tests

Component Tests offer several advantages in our testing strategy. We
can write them quickly, and they have low maintenance overhead.
These tests provide nearly instant feedback on whether individual
components of our application work correctly in isolation.

However, it's important to note that Component Tests cannot tell us
if we've wired all our components together correctly. As a result, the
confidence we gain from Component Tests regarding the functionality
of our entire application is limited.

Despite this limitation, Component Tests remain a valuable building

block in our overall testing strategy. They provide fast feedback at

minimal costs, allowing us to catch issues early in the development

process and iterate quickly.

Unit Tests

Unit Tests play a crucial role in ensuring the quality and reliability of
an application. Unlike Component Tests, which focus on testing entire
Vue components, Unit Tests target the most atomic pieces of our
application, such as modules, classes, and functions. By testing these
elements in isolation, we can quickly identify issues and potential

improvements within our codebase.

it('should correctly add two numbers', () => {
expect(add(1, 2)).toBe(3);
});

Unit Tests are essential for several reasons:

1. They provide nearly instant feedback, enabling us to identify
and fix issues while actively working on the code.

2. Unit Tests can serve as living documentation, illustrating how to

use individual functions, classes, or modules in our codebase.

3. Well-written Unit Tests can improve the overall maintainability
of our code by encouraging the use of best practices and

modular, testable code.

Writing Effective Unit Tests
To write effective Unit Tests, keep the following principles in mind:

1. Test in isolation: Unit Tests should focus on a single function,
class, or module, ensuring that each piece of our application
does what it's supposed to do. This approach allows us to

pinpoint issues quickly and accurately.

2. Keep tests simple: Unit Tests should be easy to read,
understand, and maintain. Avoid complex test setups and test a
single behavior or functionality per test. Simple tests make it
easier to identify and fix problems when tests fail.

3. Use appropriate test data: Choose test data representing real-
world scenarios and edge cases. Mimicking the real world
ensures that our tests cover various possible inputs and

outcomes, increasing the reliability and robustness of our code.

4. Write tests from a developer's perspective: Unlike
Component Tests, which also consider the user's perspective,
we write Unit Tests primarily from the developer's point of view.
This approach helps ensure that our tests accurately reflect how
we use a piece of code in practice and that it behaves as

expected when integrated with other application parts.

5. Practice TDD: Writing Unit Tests before implementing the
actual code leads to more testable and maintainable code. TDD
encourages using best practices and modular design, making it
easier to write good Unit Tests. By focusing on testability from
the start, we can create code that is more reliable, easier to

understand, and simpler to modify.

The Distinction Between Unit
Tests and Component Tests

Despite their differences, there is some overlap between Component
and Unit Tests. Both types of tests focus on testing a single unit of code
in isolation, ensuring it functions as expected.

However, as mentioned previously, Component Tests focus on
testing individual Vue components from both the user's and the
developer's perspectives. This dual perspective clearly distinguishes
Component Tests from Unit Tests, despite some conceptual overlap
between the two.

Unit Tests are even more granular than Component Tests, targeting
specific functions, classes, or modules in isolation. They ensure that
those individual units of code work as expected, disregarding the
larger whole they are part of.

Both Unit Tests and Component Tests are crucial for ensuring the
quality and reliability of our application, but they serve different
purposes within our overall testing strategy. Component Tests focus
more on the Ul and user experience, verifying that they behave as
intended when users interact with them. With Unit Tests, we aim to

validate the correctness of the underlying logic driving the application.

The Value of Unit Tests

Unit Tests provide several benefits to our application development
process. First, they offer rapid feedback on the functionality of
individual code elements, helping us catch issues early and maintain a
high-quality codebase. By testing small, isolated units of code, we can
quickly identify and fix bugs before they propagate to other parts of
the application.

Additionally, Unit Tests can serve as a form of documentation,
guiding developers on how to use and interact with various parts of

our application. Well-written Unit Tests demonstrate how to call
functions or methods, what inputs they expect, and what outputs they
produce. This type of documentation is particularly helpful for new
team members or when revisiting code after a long time.

While Unit Tests alone cannot provide complete confidence in the
functionality of our application as a whole, they are a valuable building
block in our overall testing strategy. By combining Unit Tests with
other testing types, such as Component Tests and Application Tests,
we can create a comprehensive and effective testing approach that
ensures the reliability and maintainability of our application in the
long run.

Investing time in writing Unit Tests may seem like an additional
effort upfront, but it pays off in the form of a more stable,
maintainable, and easier-to-understand codebase. Embracing Unit
Testing as part of our development process can lead to better code

quality and faster development cycles.

Summary

In this chapter, we explored the various testing approaches, from
manual testing to automated E2E System, Application, Component,
and Unit Tests. Each testing method has unique advantages and
limitations, and understanding these nuances helps select the most
suitable techniques for crafting a testing strategy that caters to our
application's specific requirements.

Key Learnings

1. Exploratory, manual testing has its place in TDD, uncovering
weird edge cases and identifying UX problems.

. We should do manual testing in a non-blocking manner (except

in high-risk environments).

. We must ensure the deployability of our applications through
fully automated tests.

. E2E System Tests comprehensively assess the entire system,

including its infrastructure.

. Application Tests focus on verifying acceptance criteria from
the user's perspective, examining the user interface and the

application's business logic.

. Component Tests concentrate on individual Vue components
within the application, ensuring they function correctly from

the perspective of users and developers.

. Unit Tests validate the functionality of smaller units within the
application, evaluating the correctness of our code from a
developer's perspective.

. Component and Unit Tests provide almost instantaneous
feedback and can help us pinpoint particular errors, while other
forms of testing provide less precise feedback. 8. Component
and Unit Tests provide almost instantaneous feedback and can
help us pinpoint particular errors, while other forms of testing

provide less precise feedback.

