Markus Oberlehner

Writing Good
Tests for Vue
Applications

Craft tests that enable you to
build better applications faster

Contents

PREFACE
Standing on the Shoulders of Giants

Setting the Stage

BREAKDOWN OF TESTING APPROACHES
The Role of Manual Testing in TDD
Four Types of Automated Tests
E2E System Tests
Application Tests
Component Tests

Unit Tests

PLANNING OUR TESTING STRATEGY
Effectively Combine Different Testing Approaches

Code Coverage Metrics: A Useful Tool with Limitations

THE THREE PRINCIPLES FOR WRITING GOOD TESTS
A Programmers Superpower: Decoupling
Decoupling from the Test Framework
Decoupling from Implementation Details

Decoupling from the Ul

SETTING UP THE PERFECT TEST ENVIRONMENT

DESIGNING EFFECTIVE APPLICATION TESTS

MASTERING COMPONENT TESTING

UNIT TESTING FUNDAMENTALS

TESTING IN THE AGILE WORLD

DEEP DIVE INTO TEST-DRIVEN DEVELOPMENT

Preface

Over the past few years of my career, I spent countless hours
dealing with testing. I wrote a lot of tests and thought a lot about
how to write good tests. But unfortunately, I also wrote a lot of bad
tests and made many mistakes typical for people new to the art of
testing.

This book is for Vue developers who want to up their testing
game and write good tests for Vue applications. Maybe, like me,
you already wrote your fair share of bad tests and wonder how to
reach the promised land of fast feedback loops, rapid release
cycles, and refactoring with confidence testing advocates keep
talking about. Over the next couple of chapters, I'll teach you how.

But if your primary goal is to learn just the basics of how to use
vue-test-utils and Jest to write unit tests for Vue components,
this is not the perfect book for you. Whereas if, instead, you want
to know the secrets of how to write tests that enable rapid
feature development and refactoring with confidence while
introducing as few bugs as possible, look no further!

The book on your screen is not mainly about learning to use
specific frameworks and libraries. Quite the opposite! There is a
separate chapter on decoupling tests from a particular test
framework. Instead of going into the details of how to use this or
that tool, this book is about principles and best practices that
enable us to write highly valuable and maintainable tests. That
said, we will also examine the pros and cons of popular
frameworks and which to choose. And, spoiler alert, we will settle
on Vitest and Playwright as test frameworks. In addition, we will
use the Testing Library to decouple tests from implementation
details and the Mock Service Worker library to mock API
requests.

Although this book primarily aims at Vue developers (we use
Vue.js in all examples of components and application code), the
basic principles apply to all kinds of web applications, no matter
what framework we use or if it's a multi-page application (MPA) or
single-page application (SPA). So the knowledge in this book is a
solid foundation for your future software developer career, even if
your path leads you to a different technology stack.

While I'm confident that the tips and principles in this book will
help you avoid the mistakes I've made in the past, there's always
room for improvement, and what works for me might not work for
you. Additionally, new tools open up new opportunities and
challenge established best practices. Over time, new insights can
radically change how and what we test. Still, I am certain: after
reading this book, you will write better tests and, by extension,
better code!

Testing can only prove the presence of bugs, not their
absence.
— Edsger W. Dijkstra

Standing on the Shoulders of Giants

Throughout my 15-year journey in programming, ['ve been
fortunate to have access to countless blog articles, talks and
videos, and StackOverflow threads (isn't the internet amazing?).
The collective wisdom of this community has been instrumental
in shaping my knowledge and skills. While it's impossible to thank
everyone individually, I'd like to acknowledge a few individuals
who have profoundly influenced my approach to testing.

Firstly, Anthony Fu, the creator of Vitest, deserves special
mention. Vitest quickly became my favorite test runner. It has

made testing more efficient and enjoyable for me.

Next, I want to express my gratitude to Kent C. Dodds. As the
creator of the Testing Library and author of numerous insightful
blog articles about testing practices, Kent's contributions to the
field are nothing short of remarkable.

I must also express my admiration for Debbie O'Brien. Her
passion and enthusiasm for testing are genuinely infectious.
Debbie's dedication to demystifying testing and making it
accessible to all developers, regardless of their experience level, is
inspirational.

Lastly, I'd like to thank Dave Farley. His insightful videos on the
Continuous Delivery YouTube channel have been a constant
source of inspiration. Dave's teachings on effective development
practices have influenced many of the concepts discussed in this
book.

As I already said, there is no way I can mention everybody. Still, I
also want to name Lachlan Miller, Mark Noonan, and Jessica
Sachs, whom I'm incredibly thankful for, for their contributions to
the testing space.

Standing on the shoulders of these and so many more giants,
I've seen further and understand deeper. I hope this book helps
you in your journey and perhaps, one day, inspires you to become

a giant on whose shoulders others may stand.

Setting the Stage

This book starts with a good deal of theory. Why, you ask? Because
I believe in giving you a solid foundation you can build upon. The
principles and concepts I introduce will equip you with the
knowledge to devise your own solutions. After all, every project is
unique, and what works in one situation may not work in another.

Although we'll learn a lot about principles and testing theory, I'll
provide plenty of practical examples and techniques for writing
tests per these principles throughout the book. But remember,
these are just examples. There are countless ways to write tests
that adhere to the principles we'll discuss. The techniques and
methods I present are just one of the paths to effective testing. My
goal is to provide you with the knowledge to navigate the often
murky testing waters, regardless of the tools you use or the
specific challenges you face.

And let's be honest: sometimes, you might not adhere as strictly
to these principles as I describe in this book. And that's okay! The
real world of software development is a complex, ever-changing
landscape. There will be times when you need to adapt and adjust
based on your circumstances and goals.

Remember, the ultimate aim here is not to follow a rigid set of
rules but to understand the principles that underpin effective
testing. Once you grasp these, you can apply them to your unique
context and challenges.

In the final chapter, we'll roll our sleeves and dive deep into
Test-Driven Development (TDD). We'll build a real-world
application using TDD and all the knowledge you've soaked up
from the previous chapters. It's where theory meets practice; trust
me, it will be fun!

[want to write the book I wish I had in my hands when I started
my journey into the world of TDD many years ago. Let's do this!

Breakdown of Testing
Approaches

As we embark on this journey to improve our testing skills and
enhance the quality of our Vue applications, it's crucial, to begin
with a solid understanding of the various testing approaches
available. This chapter serves as a foundation for building our test
strategy in the next chapter, ensuring that we have the tools and
techniques to create effective, maintainable, and reliable tests.

We will explore different testing approaches, from manual
testing to automated End-to-End (E2E) System, Application,
Component, and Unit Tests. Each technique has unique
advantages and limitations, and understanding their nuances will
enable us to select the most suitable methods for our specific
project requirements. Furthermore, by combining these
approaches, we can create a comprehensive testing strategy that
ensures our applications are robust, resilient, and ready to face the
challenges of the real world.

As we progress through this chapter, remember that the goal is
not to advocate for one testing approach over another but to
provide the knowledge and insights to make informed decisions
about which methods best serve our needs. By the end of this
chapter, you will clearly understand the various testing
approaches and will be well-equipped to craft a tailored testing
strategy for your application.

The Role of Manual Testing in TDD

As we delve into the various testing approaches, let's first examine
the role of manual testing in Test-Driven Development. While

TDD primarily focuses on automated testing, manual testing still
has a place in our overall testing strategy. It can be instrumental in
uncovering errors, especially those that occur in specific edge
cases and can complement automated tests by focusing on an
application's user experience and usability.

By understanding the role and value of manual testing in TDD,
we will be better equipped to make informed decisions about
when and how to incorporate it into our Vue application testing
strategy. In addition, this knowledge will enable you to create a
well-rounded testing approach that ensures not only the
functionality of your application but also its usability and overall

user experience.

The Value of Manual Testing

Systematic manual testing can lead to excellent results in
preventing the deployment of errors that only occur in specific
edge cases. Quality Assurance (QA) professionals excel at finding
various types of errors, including those that often only happen in
particularly exceptional circumstances. But manual testing isn't
just about bug hunting. It's also an invaluable tool for assessing
the quality of the user experience. It allows us to answer not just
the question of 'does it work?' but also 'does it work well?' So,
manual testing serves a dual purpose: finding bugs that might
remain undiscovered for a long time and ensuring the overall

quality of the user experience.

Testing on Production!?

Manual testing can take place directly on the production system
or, ideally, on a near-perfect copy of the production system.
Testing on a reproduction of the production system, even before

changes are published, is preferable to testing directly on the live
system if stakes are high and the cost of deploying buggy code can
be fatal. However, remember that setting up and operating a
staging environment as close to the production system as possible
further increases the already high costs incurred by the additional
personnel.

Ideally, you don't only have a single staging environment, but
you can quickly spin up new environments as needed. But each
environment must be 100% independent, which means that
changes (to the data) in one environment don't affect other

environments in any way.

Avoid Striving for Perfection

A common question arises: how close should our testing
approach be to reality? Should we perform manual tests on the
production system? Or should our staging system mirror the
production system as accurately as possible? Is it necessary for
our test framework to control a real browser or even be capable of
simulating all browsers and devices we want to support? Striving
for extreme accuracy in testing can be very time-consuming,
resource-intensive, and expensive.

For the maximum possible amount of confidence, we have to
use the production system itself and observe a representative set
of users. In this perfect world scenario, the users do not know we
are keeping taps on them. In practice, however, we must respect
the privacy of our users.

Although we can use this approach to find errors, typically,
however, we mostly go this route to uncover usability issues. For
this purpose, such tests can be instrumental and thus justify the
high costs in many cases. However, because of the significant

effort required, this type of testing is unsuitable as a systematic

approach to finding errors in our system. Therefore, user tests will
no longer play a significant role in the rest of this book.

Manual Test Plans and Exploratory Testing

The exact procedure for manual testing can vary greatly. For
example, we can take a very structured approach, with
meticulously worked-out test plans that we process step by step.
Or, we try to provoke errors that can occur with improper or
unforeseen usage patterns. While executing fixed test plans often
can (and should) be automated, fully automating exploratory
testing is much more challenging. Manual, exploratory testing,
therefore, represents a valuable building block in a successful
testing strategy.

When we use manual testing in conjunction with automated
tests, our primary goal is not to prevent regressions—automated
tests are better suited to clarify whether our application works—
instead, with manual testing, we can focus on checking how well
the application performs its tasks. Machines cannot answer this
question. At least not yet. On the other hand, we humans are well
suited to empathize with other people and thus find out whether
interacting with our application is intuitive. And whether the
application can cope with users using it differently than we
planned. In contrast to automated testing, manual testing is costly.
Therefore, we should try to get the most out of it when we choose
this approach.

Remember that this type of testing is not only expensive
because of the high personnel effort but also because developers
receive feedback in their daily work very slowly. Feedback loops
should be as short as possible. A few milliseconds are perfect,
seconds good, minutes may be acceptable in some cases, and

anything beyond hours is unsuitable as a tool to support the

development process. From the development cycle
perspective, manual testing can only ever supplement
automated forms of testing.

Manual Testing in High-Stakes Industries

However, we can consider manual testing as our primary testing
strategy if we have a lot of money available or work in a business
sector with low error tolerance (e.g., aviation, healthcare, or
finance). Manual testing can help us to discover errors that we
would otherwise only find when it is too late. In most cases,
however, I recommend using this type of testing only in addition
to the following strategies. And even if we decide to rely heavily on
manual testing, it's not an excuse for doing less automated testing.
Quite the opposite! In high-stakes industries, automated
testing is even more essential.

Balancing Manual and Automated Testing

Finding the right balance between manual and automated testing
is crucial for optimizing the effectiveness of our testing strategy.
While manual testing can provide valuable insights into usability
and user experience, automated testing should be the foundation
of our approach, ensuring our application's functionality,
performance, and reliability.

By implementing a manual testing regime that is well-dosed,
does not block deployments (no gatekeeping!), and focuses on
finding issues with the usability of our application instead of
detecting regressions, we can create a well-rounded and efficient
testing strategy that ensures the quality of your applications while

minimizing costs and maximizing the value of our testing efforts.

Four Types of Automated Tests

Automated tests are the gold standard for ensuring that
applications and whole systems perform as expected. By
automating tests, we save a significant amount of manual work,
and once we have written the tests, we can run them as often as
we want, almost for free. Every test we want to perform
regularly and can be automated should be automated. This
reduces the need for manual testing, and we can use the freed-up
resources to build new features or find errors that automated tests
cannot detect.

In the realm of automated testing, we often encounter a
plethora of terms for various test types: E2E tests, acceptance
tests, integration tests, unit tests, and many more. Since there is
no official authority to define and standardize these terms, it can
be challenging to establish clear distinctions. In this book, we will
differentiate between the following four types of automated tests,
providing a consistent framework for understanding their unique

purposes and characteristics:

e E2E System Tests: These tests aim to evaluate a complete
system, including its entire infrastructure (data persistence,
third-party services, etc.). They provide a comprehensive
assessment of how well the system functions as a whole,
ensuring that all pieces work together seamlessly.

e Application Tests: Focused on verifying the fulfillment of
acceptance criteria from the user's perspective, Application
Tests examine both the user interface and the application's
business logic. Opposed to E2E System Tests, these tests
isolate the application from other system components,
using mocks to replace external dependencies and allowing
for a more targeted assessment of the application's
functionality.

e Component Tests: These tests concentrate on individual
Vue components within the application, ensuring they
function correctly. By isolating components and testing
them independently, Component Tests help surface issues
quickly.

e Unit Tests: Designed to validate the functionality of
smaller units within the application, Unit Tests evaluate the
correct working of specific elements from the perspective

of a developer using a piece of code (unit) in their own code.

E2E System Tests

The way I define E2E System Tests is that we test a whole system
without mocking any of its parts. While we use mocks in other
forms of automated testing to run tests independently of external
services, we avoid them in E2E testing altogether. As a result, E2E
System Tests provide a high degree of confidence by testing the
entire system end-to-end, including the surrounding infrastructure,
allowing us to identify specific kinds of errors which otherwise
would go undetected.

// Test with no mocking whatsoever

it('should be possible to buy a bike', async ({ page }) => {

await page.goto('https://my.bikestore');

await page.findByText('Best Bike Ever').click();

await page.findByRole('button', { name: 'Add to cart' }).click();

await page.findByRole('button', { name: 'Checkout' }).click();

D e

const successMessage = page.findByText('Thank you for your order!');

expect(await successMessage.isVisible()).toBe(true);

});

However, even having E2E System Tests in place does not mean
our system is error-free! Even the best and most elaborate tests
can only prove that there are errors, not that there are no errors.
Therefore, if we discover a bug through manual testing or because
our users point it out, we should add a new test as part of the bug-
fixing process to ensure the error does not recur. Remember that
the last part is also true for the following types of tests, not only
E2E System Tests!

Challenges and Costs of E2E System Tests

Automated E2E System Tests provide high confidence but have
associated challenges and costs. To ensure high confidence, we
must create a test environment that closely resembles the
production environment. Establishing and maintaining such a

replica can be challenging, especially when considering the need

to prevent interference between test scenarios. We need the
flexibility to run our tests in any order and even in parallel. The
thoughtful design of our test infrastructure is crucial to achieving
a non-interfering test environment. Succumbing to the temptation
of taking shortcuts may lead to long-term issues, such as false
positives and flaky tests.

We also must consider that running one or multiple exact
copies of the production system necessitates considerable
resources. Therefore, a classic problem in the real world is that
many companies resort to using underpowered hardware for their
testing and staging environments to cut costs. Consequently, E2E
test suites may take several hours to complete, undermining the
goal of leveraging testing for fast feedback loops. Ideally, tests
should be stable and swift, as unstable tests with lengthy runtimes
often prove too costly due to their moderate benefit for developers

and high maintenance requirements.

Technical Implementation of E2E System Tests

Tailoring the architecture and infrastructure of our testing
environment to the requirements of our system is crucial for
running E2E System Tests independently. This process involves
configuring the system to allow for isolated, parallel execution of
tests and ensuring the necessary resources and services are
available for each test scenario.

Consider a microservices architecture: to set up an effective E2E
test suite, we must be able to bring each microservice into a
particular state. E.g., if we want to test if a web shop user can
cancel an order, at the very least, we have to set up a fresh user
and assign a pending order to it. Designing and maintaining such
an environment can be a complex task, deserving of a book of its

own. However, investing in a well-structured architecture and

infrastructure will ultimately enhance the efficiency, reliability,
and value of your E2E System Tests.

The technical implementation of E2E System Tests varies based
on the system under test and the technologies employed. As a
result, I will not delve into the details of writing E2E System Tests
in this book. Nonetheless, many principles and techniques
discussed in the chapter on Application Tests also apply to E2E
System Tests.

Balancing High Confidence and Costs

E2E System Tests offer a high level of confidence at a moderate
cost. However, given the complexity and time-consuming nature
of implementing and maintaining E2E System Tests, it is crucial to
carefully weigh the pros against the many cons to decide which
parts of the system warrant E2E testing. A possible approach to
significantly reduce the run times of E2E System Tests is to rely on
so-called smoke tests.

Two factors make E2E System Tests particularly expensive: the
effort required to set up and continuously maintain an
environment for conducting E2E System Tests and the
comparatively long run times. One way to deal with these
challenges is to adopt a smoke testing approach.

Smoke tests focus on the most critical and delicate parts of the
system, particularly those areas where integration with other
system components is essential. The role of smoke tests is to
quickly alert us about fundamental problems with our software
through a few select tests rather than achieving very high test
coverage. By smoke testing our entire system, we can promptly
uncover issues in the most crucial areas of our application.

We strictly focus on the core functions of our system, such as
adding a product to the shopping cart or going through the

checkout process in an e-commerce application. In those cases,
we are interested in whether the integration with the payment
provider functions correctly or whether our system sends the
order to the correct order-tracking application and not so much in
verifying every tiny detail of the process.

Using smoke tests to integrate E2E System Testing into our
overall testing strategy allows us to focus on testing those
functionalities whose failure would result in significant financial
loss and where there are delicate dependencies with other parts of
the system. This approach, combined with other testing
methodologies, is an excellent way to keep the effort required for
E2E System Tests in check while benefiting from their advantages,
such as ensuring that the individual components of our system

communicate correctly with each other.

Monitoring and Reporting

Monitoring and reporting the results of E2E System Tests are
crucial for maintaining visibility into the application's
performance and reliability. Addressing any issues timely can help
the team stay proactive in identifying and resolving potential
problems before they escalate. Remember: whenever our
pipeline fails, it becomes the top priority of the whole team
to fix it. Clear and concise reporting helps stakeholders stay
informed about the application's status and whether it is in a

deployable state.

Continuous Improvement

Reviewing and improving the E2E System Testing process is
essential as applications evolve and grow. Regularly updating test
cases to cover new features, addressing any false positives or flaky

tests, and refining the testing strategy to focus on the most critical
system components will help maintain a high level of confidence
in the application's performance and reliability.

Automated E2E System Tests can provide significant value in
ensuring the reliability of our system, but they come at a cost.
However, we can achieve high confidence while keeping the costs
in check by addressing the challenges associated with E2E System
Testing by incorporating smoke tests.

Application Tests

The term Application Test, as defined in this book, is not
universally accepted. The word integration tests is often used for
this type of test, while other resources use the term E2E Test to
describe tests with a similar purpose. Even the phrase Application
Test can be found with varying meanings online. However, for
clarity, this book will use the term Application Test and differentiate
between E2E System Tests and Application Tests.

You might disagree with the names I decided to use. And that's
ok. Consider adopting a naming scheme that fits your or your
team's preferences. But one thing is important: Due to the
ambiguity of the terminology, everyone within a team or a
company must have a shared understanding of what you call each
test type.

// Application Test mocking an external service
it('should be possible to buy a bike', async ({ page }) => {
await page.route('/api/product/list', async route => {
const json = [
bestBikeEver,
notSoGoodBike,
badBike,
1;
await route.fulfill({ json });
})s
await page.route('/api/checkout', async route => {
const json = { success: true };
await route.fulfill({ json });
})s
await page.goto('https://my.bikestore');

await page.findByText('Best Bike Ever').click();
await page.findByRole('button', { name: 'Add to cart' }).click();

await page.findByRole('button', { name: 'Checkout' }).click();

[/ aa.

const successMessage = page.findByText('Thank you for your order!');
expect(await successMessage.isVisible()).toBe(true);

});

The Purpose of Application Tests

With Application Tests, we do not aim to test the whole system

with all its services and components and ensure that their

integration works as expected; that is the purpose of E2E System
Tests or other means, like contract tests. Instead, the primary goal
of Application Tests is to verify whether our application behaves
according to the users' expectations based on predefined
acceptance criteria. Of course, ensuring this with absolute
certainty requires validating the integration of all parts of our
system. Yet with Application Tests, we try to strike a balance
between accuracy and efficiency, favoring fast feedback loops over

absolute certainty.

System

Application / Repository

Component A Service A

Component B

Service B

Function C

\ /

A critical aspect of my definition of Application Tests is that they
are designed to test the acceptance criteria of a specific
application (part of a more extensive system). I define an
application as everything within a single repository. And to be even
more specific, in this book, we focus on testing Vue.js-based
Single Page Applications (SPAs). Users interact with our system
through the Vue application, meaning that all acceptance criteria,
formulated from the users' perspective, go through the Vue SPA

first. In contrast, parts of the system outside our Vue SPA

(database, backend services, etc.) are invisible to our users and,
therefore, safe to ignore for this type of testing.

In Application Tests, we presume all other modules of our
system function as expected, which is a fair assumption
considering that we may not even have access to the code of all
the services our application communicates with. When assuming
that all modules of the system we rely on work as expected, we can
safely replace every external module with mocks as long as we
ensure we adhere to the contract provided by those external
services.

Application Tests vs. E2E System Tests

While E2E System Tests evaluate the entire system, including all
its individual pieces like API services and databases, the primary
goal of automated Application Tests is to ensure that one
particular part, the application that our users directly interact
with, functions correctly. We test the behavior of our application
and not the implementation of the system as a whole. So, for
example, whether data is fetched from or sent to a particular
service is irrelevant to us in the context of Application Testing.

The type of application we test determines which factors we
consider relevant for evaluating whether we meet the acceptance
criteria. For instance, the exact data persistence method is not our
concern when testing a web application's user interface. However,
verifying whether data is stored correctly is crucial when testing
an API service.

The primary distinction between Application Tests and E2E
System Tests lies in the clear boundary to other system parts, with
tests focusing on a single application. Therefore, we ignore or

mock all aspects of the system that are not part of our application.

Although omitting large parts of our system in our tests may
make some people nervous and question the validity of our tests,
the advantages of this compromise generally outweigh the
disadvantages. Comprehensive E2E System Tests offer diminishing
returns over comparatively simpler and faster Application Tests.
The minimal confidence gain they provide is usually not worth the

additional cost.

Advantages of Application Tests

Application Tests are fast, stable, and easy to implement when
done correctly. As a result, they are generally more cost-effective
due to less maintenance and shorter feedback loops, positively
impacting the team's velocity. Of course, automated Application
Tests don't guarantee that our entire system, including all services
and databases, will work. However, they offer a high confidence

level at a comparatively low price.

Component Tests

Before diving into the details, let's clarify what I mean by
Component Tests. In the context of this book, when we refer to
Component Tests, we're talking about tests that focus on a single
Vue.js component. Components are the building blocks of our
application. Each one has a specific job and must perform it
flawlessly. Component Tests allow us to ensure this by testing the
functionality of each component in isolation.

The most significant benefit of Component Tests over
Application Tests is their speed. Creating Component Tests is a
quick process, and they provide rapid feedback. By following

certain best practices, maintenance is also straightforward

compared to more extensive ways of testing. However, Component
Tests can not tell us whether our whole application functions as
expected. As the name suggests, Component Tests evaluate the
functionality of a single component, so only a tiny part of our
application, in isolation.

// In this component test we only test a single

/]

it(

PostForm™ component in isolation.

'should inform the user when invalid data is entered', async () => {

render(PostForm);

const inputField = await screen.findByLabel('Title"');

await userEvent.type(inputField, '');

await userEvent.click(screen.getByRole('button', { name: 'Save' }));

expect(await screen.findByText('Please enter a valid

title')).toBeInTheDocument();

});

Test Frameworks and Test Types

It's common to associate certain tools with specific types of tests.
For example, people often identify Playwright with E2E and
Application Tests due to its capabilities for simulating user
interactions in a real browser environment. On the other hand, we
frequently see Jest and Vitest as the tools of choice for Unit and
Component Tests. However, all the tools above can execute
Application and Component Tests. The choice depends on your
specific needs and the trade-offs that best suit vyour

circumstances.

The crucial point here is that the type of test—be it Component
or Application—is not determined by the tool you use but by what
and how you test. You can run Component Tests using Jest or
Vitest with vue-test-utils , just as you can conduct Application or
E2E Tests with Playwright or Cypress. These tools are versatile
enough to test both individual components and complete

applications.

Two Perspectives: User And Developer

We use Component Tests to test a specific Vue component in
isolation. While with E2E System Tests and Application Tests, we
write all of our tests from the perspective of a user, when it comes
to Component Tests, we have to consider two perspectives: again,
the view of a user but also how a developer interacts with a
component when using it to build a new feature. Taking a
developer's perspective is what we do with Unit Tests, too. So the
main differentiator between Unit and Component Tests is that we
must also consider a user's perspective with the latter in addition
to the developer's view. So always consider the two points of view

when working on Vue.js Component Test.

Component
Output Events
)\ » Props
Developer
HTML
/K » Input Events
User

What If Writing Tests Feels Like a Chore?

Sometimes, writing Component Tests might feel like a chore. If
this is the case, we probably write code that is hard to test, often
indicating that our code could be better quality. However, the
more we adhere to best practices when writing code, the easier it
will be to write good Component Tests. For example, pure
functions (and components) without side effects are much easier
to test than functions that trigger side effects (e.g., fetching data
from or sending data to an API endpoint) or depend on globals. I,
therefore, advise against registering components globally or using
Vue plug-ins excessively and avoiding fetching data at every level
of your application.

Furthermore, most developers who have difficulty writing new
and maintaining tests tend to write tests after finishing the code
of a new component. On the other hand, if we flip things around
and practice TDD, writing the test before the actual

implementation, we will find that writing code that is easy to test
comes naturally.

Benefits of Component Tests

Component Tests can be written swiftly, have low maintenance
overhead, and provide feedback almost instantaneously on
whether individual components of our application work correctly
in isolation. However, they can't tell us if we've wired all our
Components correctly. Consequently, the confidence we gain
from Component Tests regarding the functionality of our
application as a whole is limited. Nevertheless, Component Tests
are a valuable building block in our overall testing strategy

because they provide speedy feedback at minimal costs.

Unit Tests

Unit Tests play a vital role in ensuring the quality and reliability of
an application. In contrast to Component Tests, which focus on
testing whole Vue components, Unit Tests target the most atomic
pieces of our application, such as modules, classes, and functions.
As a result, we can quickly identify issues and potential
improvements within our codebase by testing these elements in

isolation with Unit Tests.

it('should correctly add two numbers', () => {

expect(add(1, 2)).toBe(3);

});

Unit Tests are essential for several reasons:

1. They provide almost instantaneous feedback, allowing us to

identify and fix issues while working on the code.

2. Unit Tests can serve as living documentation, illustrating
how to use individual functions, classes, or modules in our
code.

3. Well-written Unit Tests can improve the overall
maintainability of our codebase by encouraging the use of
best practices and modular, thus testable code.

Writing Effective Unit Tests

When writing Unit Tests, it's crucial to keep the following

principles in mind:

1. Test in isolation: Unit Tests should focus on a single
function, class, or module, ensuring that each piece of our
application does exactly what it's supposed to do. This
approach allows us to pinpoint issues quickly and
accurately.

2. Keep tests simple: Unit Tests should be easy to read,
understand, and maintain. We must avoid complex test

setups and test a single behavior or functionality per test.

3. Use appropriate test data: Choose test data
representative of real-world scenarios and edge cases,
ensuring that our tests cover various possible inputs and

outcomes.

4. Write tests from a developer's perspective: Unlike
Component Tests, which also consider the user's
perspective, we write Unit Tests primarily from the
developer's point of view. This approach helps ensure that
our tests accurately reflect how we use a piece of code in

practice.

5. Practice TDD: Writing Unit Tests before implementing the
actual code leads to more testable and maintainable code.
In addition, TDD encourages using best practices and
modular design, making writing good Unit Tests easier.

The Relationship Between Unit Tests and
Component Tests

As mentioned in the previous chapter, Component Tests focus on
testing individual Vue components from both the user's and the
developer's perspectives. While there is some conceptual overlap
between Component Tests and Unit Tests, considering two
perspectives clearly distinguishes those two types of tests.

Furthermore, Unit Tests are even more granular, targeting
specific functions, classes, or modules in isolation. In contrast,
Component Tests evaluate the functionality of a Vue component
as a whole. Both tests are crucial for ensuring the quality and
reliability of our application, but they serve different roles within
our overall testing strategy.

The Value of Unit Tests

Unit Tests provide several benefits to vyour application
development process. First, they offer rapid feedback on the
functionality of individual code elements, helping us catch issues

early and maintain a high-quality codebase. Additionally, Unit

Tests can serve as a form of documentation, guiding developers
on how to use and interact with various parts of our application.
While Unit Tests cannot provide complete confidence in the
functionality of our application as a whole, they are a valuable
building block in our overall testing strategy. By combining Unit
Tests with other testing types, such as Component Tests and
Application Tests, we can create a comprehensive and effective
testing strategy that ensures the reliability and maintainability of

our application in the long run.

Summary

This chapter taught us about various testing approaches,
including manual testing, automated E2E System, Application,
Component, and Unit Tests. Each testing method has unique
advantages and limitations, and understanding these nuances
helps select the most suitable techniques for specific project

requirements.

Key Learnings

1. Exploratory, manual testing has its place in TDD,

uncovering edge cases and assessing the user experience.

2. Balancing manual and automated testing with a focus on
automation is crucial for optimizing the effectiveness of a

testing strategy.

3. E2E System Tests comprehensively assess the whole

system, including its infrastructure.

4. Application Tests focus on verifying acceptance criteria
from the user's perspective, examining the user interface

and the application's business logic.

5. Component Tests concentrate on individual Vue
components within the application, ensuring they function

correctly from the perspective of users and developers.

6. Unit Tests validate the functionality of smaller units within
the application, evaluating specific elements from a
developer's perspective.

7. We can use tools like Cypress, Playwright, Vitest, and Jest
for both, Application and Component Tests—what and how

we test is the main differentiator, not the tool we use.

8. Component and Unit Tests provide almost instantaneous
feedback and can help us pinpoint particular errors, while

other forms of testing provide less precise feedback.

